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Figure 1. Illustrating in-context aware image generation with Context Diffusion. Top row: HED-to-image as an in-domain task;
Middle row: canny-to-image as an out-of-domain task. Our model enables learning from context with and without prompts. The counterpart
model, Prompt Diffusion [43] does not leverage the context if the prompt is not provided, hinting at its over-reliance on textual guidance;
Bottom row: Few-shot setting for sketch-to-image task. More context examples help in learning stronger visual cues, even without prompts.

Abstract
We propose Context Diffusion, a diffusion-based frame-

work that enables image generation models to learn from
visual examples presented in context. Recent work tack-
les such in-context learning for image generation, where a
query image is provided alongside context examples and text
prompts. However, the quality and fidelity of the generated
images deteriorate when the prompt is not present, demon-
strating that these models are unable to truly learn from the
visual context. To address this, we propose a novel frame-
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work that separates the encoding of the visual context and
preserving the structure of the query images. This results in
the ability to learn from the visual context and text prompts,
but also from either one of them. Furthermore, we enable
our model to handle few-shot settings, to effectively address
diverse in-context learning scenarios. Our experiments and
user study demonstrate that Context Diffusion excels in both
in-domain and out-of-domain tasks, resulting in an over-
all enhancement in image quality and fidelity compared to
counterpart models.
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1. Introduction
Generative models are witnessing major advances, both in
natural language [6, 9, 27, 40, 45, 49] and media genera-
tion [5, 18, 28, 33, 36]. Large language models in particu-
lar have shown impressive in-context learning capabilities
[6, 46]. This is the ability of a model to learn from a few
samples on the fly, without any gradient-based updates, and
extend it to new tasks. However, for generative models
in computer vision, learning from context examples is still
under-explored.

Prompt Diffusion [43] is perhaps the closest line of work
that explicitly supports a single source-target image pair as
a context example for image generation. It builds on the
popular ControlNet [48] model which introduced the idea of
visually controllable diffusion models for image generation.
Specifically, Prompt Diffusion attempts to learn the visual
mapping from the source image to the target context image
and applies it to a new query image, by also using a prompt
for text-based guidance. However, we empirically observed
that this model struggles to leverage the image pairs when
the text prompt is absent. This results in low fidelity to the
visual context examples, particularly when the examples are
from a different domain than what is seen during training.
For instance, if the source-target pairs show specific styles,
they cannot be learned during inference just from the context
examples. This is seen in the first row of Figure 1 where
Prompt Diffusion is unable to learn the “snowy” style from
the context unless prompted through text. Additionally, it
does not trivially support multiple source-target images as
context examples, which limits the visual information that
can be provided to the model.

We address these challenges with our proposed Context
Diffusion model that can (i) effectively learn from visual
context examples as well as follow text prompts and (ii)
support a variable number of context examples since visual
characteristics can be defined with more than a single exam-
ple. Unlike Prompt Diffusion, our model does not require
paired context examples, but just one or more “target” con-
text images serving as examples of the desired output and a
single query image providing visual structure. The reason
for using target examples as context is that the source im-
ages are derived from the target itself and do not provide
any additional information for the task. Typically, the query
image provides guidance for the output structure through
edges, depth, segmentation maps, etc. On the other hand,
the context images provide hints for finer details like style,
texture, colors, and object appearances desired in the output
image.

It is important to note the difficulty in controlling both
aspects of the output image solely through the control mech-
anism used in a ControlNet-like model. The “control” part
of the model is very effective in capturing high-level struc-
ture. However, finer details are better captured through the

conditioning mechanism. A similar observation is made in
previous works such as textual inversion [12] and retrieval-
augmented image generation [4, 7], where object appearance
is preserved by encoding it through conditioning. Inspired
by this, we inject information from the context images into
the network in a similar fashion as text conditioning. In
particular, we sum the visual embeddings from the context
images and place them alongside the text embeddings in the
cross-attention layers of the diffusion model. This allows
stronger reliance on the visual input from the context and
also supports multiple context images. The structure from
the query image is preserved by passing it as a control signal
to the network in a similar manner as ControlNet [48].

We follow a similar training strategy as Prompt Diffusion
[43], by learning from six different tasks using generated
images and their maps. At inference time, we use a query
image to define the target structure and one or more context
images to provide finer visual signals, alongside an optional
text prompt. Our experiments study the generation ability
of Context Diffusion for in-domain tasks, such as using
HED, segmentation, and depth maps to generate real images
and vice versa. We show the flexibility of our model to
preserve structure from the query image and transfer other
visual signals from the context even when the text prompt
is missing. Moreover, to properly study in-context learning
abilities, we experiment with unseen, out-of-domain tasks,
such as handling sketches as query images, image editing,
and more. This demonstrates the generalization abilities of
Context Diffusion, unlike previous works. Furthermore, for
such tasks, using multiple images as context helps improve
the fidelity of the generated images to the context.

Contributions. (i) We propose Context Diffusion, an in-
context aware image generation framework. It enables pre-
trained diffusion models to use visual context examples to
control the appearance of the output image, alongside a query
image that defines structure and an optional text prompt. (ii)
We enable the use of multiple context images as “few-shot”
examples for image generation. To the best of our knowl-
edge, this is the first work to explore such a “few-shot” setup
for in-context aware image generation. (iii) We conduct
extensive offline and online (human) evaluations that show
that our framework can handle several in-domain and out-of-
domain tasks and demonstrates improved performance over
the counterpart model.

2. Related Work
Diffusion-based Image Generation. Recent advance-
ments in diffusion models, first introduced in [38] have ex-
hibited huge success in text-to-image generation tasks [10,
17, 31, 32, 36]. Enhancements have been achieved through
various training [10, 33, 36] and sampling [24, 39, 44] tech-
niques. For instance, DALLE-2 [32] proposed an architec-
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ture encompassing several stages, by encoding text with
CLIP [30] language encoder and decoding images from the
encoded text embeddings, followed by Imagen [36] which
showed that up-scaling the text encoder largely improves
the text fidelity. Furthermore, the Latent Diffusion Model
(LDM) [33] investigated the diffusion process by applying it
to a low-resolution latent space and even further improved
the training efficiency. However, all these models only take a
text prompt as input, which restricts the flexibility of the gen-
eration process as it requires extensive prompt engineering
to obtain the desired image outputs.

Controllable Image Generation. Adding more control
to the image generation process, besides the text prompts,
helps in overall customization and task-specific image gen-
eration. Recent text-conditioned models focus on adjusting
models by task-specific fine-tuning [8, 12, 35], injecting
conditioning maps, like segmentation maps, sketches or key-
points [2, 3, 11, 23, 29, 48], or exploring editing abilities
[5, 13, 15, 25, 26]. For instance, SpaText [2] is using seg-
mentation maps where each region of interest is annotated
with text, to better control the layout of the generated image.
Models like GLIGEN [22] inject grounding information,
such as bounding boxes or edge maps, into new trainable lay-
ers via a gated cross-attention mechanism. ControlNet [48],
as a recent state-of-the art in controllable image generation
presents a general framework for adding spatial conditioning
controls. UniControl [29] extends ControlNet by unifying
various image map conditions into a single image genera-
tion framework. Other works, such as Re-Imagen [7] and
RDM [4], employ retrieval for choosing images given a text
prompt, for controlling the generation process.

Our approach differs from these models in several aspects.
We support in-context learning from visual examples as an
addition to the textual prompts and query images. This al-
lows learning new tasks using the visual context only, which
yields a more flexible framework. Additionally, we use only
a few of the image maps considered by ControlNet and Uni-
Control for training, namely HED, segmentation, and depth
maps, and demonstrate the generalization ability to the other
visual controls i.e. query images.

In-Context Learning in Image Generation. In-context
learning is vastly explored both in language-only [6, 20, 45,
46] and visual-language models [1, 19, 21, 41], as an emer-
gent ability enabling to learn new tasks without additional
gradient-based updates. However, the ability to learn from
context examples is lagging behind in image generation.
Prompt Diffusion [43] presents such a framework, by ex-
tending the control abilities of ControlNet [48] and training
for in-context image generation. They consider a vision-
language prompt encompassing a source-target image pair
and a text prompt, which is used to jointly train the model on

six different tasks. However, Prompt Diffusion only shows
good performance when both the context images and prompt
are present. In case the text prompt is not present, the model
exhibits deteriorating performance, suggesting its inability
to learn efficiently from the visual examples, as shown in
Figures 1, 3, 4, 5, 6, and 7.

Different from them, we aim to develop a model able
to generate images of good quality even when only one of
the conditions (visual context or text prompt) is present,
both for in-domain and out-of-domain tasks. Another work
tackling image generation with visual examples is Prompt-
Free Diffusion [47]. It focuses only on having an image as a
context, ie, a visual condition, while completely removing
the ability to process textual prompts. This is the major
difference compared to our Context Diffusion, since we aim
to support both scenarios: having the context images and/or
text prompts. Additionally, none of these related works
consider settings with multiple examples in context, namely,
few-shot scenarios. We propose a framework that can handle
a variable number of context images, helpful for enriching
the visual context representation.

3. Methodology
3.1. Preliminaries

Diffusion models are a class of generative models that con-
vert Gaussian noise into samples from a learned data dis-
tribution via an iterative denoising process. In the case of
diffusion models for text-to-image generation, starting from
noise zt, the model produces less noisy samples zt−1, . . . , z0,
conditioned on caption representation c at every time step t.

To learn such a model fθ parameterized by θ, for each
step t, the diffusion training objective L solves the denoising
problem on noisy representations zt, as follows:

min
θ

L = Ez,ϵ∽N (0,1),t

[
∥ ϵ− fθ(zt, t, c) ∥22

]
, (1)

With large-scale training, the model fθ is trained to denoise
zt based on text information as the main source of control.

To enable more control over the generation process, we
follow the ControlNet setup [48], for encoding the structure
of the desired output via a query image as visual control.
Note that, according to in-context learning parlance, we
use query image interchangeably with visual control. In
this paper, we extend the c representation in Eq. (1), by
adding image examples as additional guidance besides the
text prompt. Namely, we inject visual embeddings obtained
by a pre-trained vision encoder fimg with fixed parameters,
in a similar fashion as the prompt embeddings.

3.2. Context Diffusion Architecture

The model fθ is essentially a UNet architecture [34], with
an encoder, a middle block, and a skip-connected decoder.
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Figure 2. Architecture of Context Diffusion. It consists of several
modules: vision and text encoders for encoding the text prompt
and visual context respectively, an LDM backbone for handling
the image generation process, and an additional LDM encoder for
processing the query image as a visual control. Note that here we
show one visual context example, however, the model is trained
using a variable number of such examples.

These modules denoted as LDM encoder, mid, and decoder
in Figure 2, are built out of standard ResNet [14] and Trans-
former blocks [42] which contain several cross-attention and
self-attention mechanisms. The core of conditional-diffusion
models is encoding the conditional information [33], based
on which zt is generated at a given time step t. We differen-
tiate two types of such conditional information: the visual
context V encompassing images and the text prompt c, to
define our conditioning information: y = (c,V), where
V = [v1, . . .vk] and k are the number of images. Addition-
ally, we consider a visual control image, i.e., the query image
that serves to define the structure of the output denoted as q.

Prompt encoding. To perform the encoding of the textual
prompt c we use a pre-trained language encoder ftext with
fixed parameters to obtain the embeddings. Particularly,
we obtain hc = {hc

0, . . . , h
c
Nc} = ftext(c), where Nc is the

number of text tokens, hc
i ∈ Rdc

and dc is the dimensionality
of the textual token embeddings.

Visual context encoding. We hypothesize that the vi-
sual context V should be at the same level of condition-
ing as the textual one. Therefore, we follow a similar

strategy for encoding the visual context, by using a pre-
trained, fixed image encoder fimg. Given a visual context
V consisting of k-images, we encode each image vi as
hvi = {hvi

0 , . . . , hvi

Nv} = fimg(vi), where Nv is the num-
ber of tokens per image, hvi ∈ Rdv

and dv is the dimen-
sionality of the visual token embeddings. The final repre-
sentation of the visual context is obtained by simply sum-
ming the corresponding visual tokens of all k-images, where
k ∈ {1, 2, 3}, yielding hV =

∑k
i=1 h

vi . Additionally, we
add a linear projection layer to map the visual embedding
dimension dv to the language dimension dc.

Modified cross-attention. Given the standard cross-
attention block in LDMs, defined with queries Q, keys K,
and values V , the noisy representation zt is used as a query,
whereas the text encoding hc is used as a representation of
the keys and values, as follows:

zt = zt + CrossAtt(Q = zt,K = V = hc). (2)

Our framework is slightly different from this definition since
we also consider visual information in the conditioning.
Therefore, after obtaining both visual and textual embed-
dings we simply concatenate them to obtain [hc,hV], illus-
trated in the bottom left corner of Figure 2. We hypothesize
that the visual and textual conditioning should be at the
same level, thus the input to the cross-attention block in (2)
changes as follows:

zt = zt + CrossAtt(Q = zt,K = V = [hc,hV]). (3)

Visual control encoding. To enable the ingestion of the
query image as visual control, we follow ControlNet setup
[48]. First, the image is encoded using a few convolutional
layers. Then, a copy of the LDM encoder is used to process
the encoded query image q. This trainable LDM encoder
copy is connected to the original LDM backbone using zero
convolution layers, as shown in Figure 2.

3.3. Multi-task Training Procedure

We use a pre-trained image generation model to adapt it
with visual context injection. We use the original denoising
objective defined in (1), with q being the query image and
the modified conditioning information y:

min
θ

L = Ez,ϵ∽N (0,1),t

[
∥ ϵ− fθ(zt, t,y,q) ∥22

]
. (4)

To train with this objective, we use a collection of tasks for
joint end-to-end training, similar to [43]. Different from
them, we use a visual context sequence consisting of a k-
images and a text prompt, together with a query image.
Specifically, k is randomly chosen at batch construction.
The goal of such training is to leverage any visual character-
istics from the context images and to apply them along with
the text prompt to the query image.
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Prompt dropout. We aim to achieve learning from the
context images by avoiding over-reliance on the text prompts.
Starting from a pre-trained text-to-image model means the
ability to generate images given a text prompt is already
strong. Therefore, to enforce the model to pick up cues from
an additional conditioning signal i.e. the visual context, we
apply random replacement of 50% of the text prompts with
empty strings, similar to [48], which empirically showed to
be an important step.

4. Experiments

4.1. Experimental Setup

Datasets. To train our model, we use a dataset that consists
of 310k synthetic images and caption pairs, similar to Prompt
Diffusion [43]. Following their training setup, we extract
three image maps: HED, segmentation, and depth maps from
the training images. During training, for map-to-image tasks,
the image maps serve as queries, and real images are used
for visual context, while for image-to-map tasks, the real
images serve as queries, and image maps are used for visual
context. Note that the prompts and visual context are related
and describe the same conditioning signal.

At inference time, we use the test partition of the dataset
to test the ability to learn from context. To demonstrate
the generalization abilities of Context Diffusion to out-of-
domain tasks, we extract other image maps, such as normal
maps, canny edges, and scribble maps. Also, we consider
editing tasks by using real images as queries. To further
test the generalization abilities, we use hand-drawn sketches
from the Sketchy dataset [37], where the sketch is the query
image, and the real images are the context. This dataset does
not provide captions, therefore we construct text prompts
using a template: “A professional, detailed, high-quality
image of object name”, following [48].

Implementation details. The backbone of our model fol-
lows a vanilla ControlNet architecture, initialized in the same
way as [48]. We train such a model using the data setup ex-
plained above. In particular, only the encoder of the LDM
backbone is kept frozen and its copy which processes the
query image is trained. For the encoding of the context
images and prompts, we use frozen CLIP ViT-L/14 [30]
encoders. We take the last-layer hidden states as representa-
tions of both the context images and prompts. The model is
trained with a fixed learning rate of 1e-4 for 50K iterations,
using 256× 256 images. We use a global batch size of 512
for all runs. At inference time, we apply DDIM [39] as a
default sampler, with 50 steps and a guidance weight of 3.
Regarding the computational resources, the model is trained
using 8 NVIDIA A100 GPUs.

Figure 3. In-domain tasks comparison to Prompt Diffusion [43]:
Examples of {HED, segmentation, depth}-to-image as forward
tasks and image-to-{HED, segmentation, depth} as reverse tasks,
with visual context and prompt (C+P) given as conditioning.

User study setup. To better quantify the performance of
our model, we perform an online evaluation in the form of a
user study to compare our model to Prompt Diffusion [43].
A total of 10 in-house annotators participated in the study,
annotating 240 test samples. We present two generated
images from the models, randomly annotated as A and B,
alongside the given visual context, query image, and prompt.
Then, each annotator chooses either a preferred image or
both as equally preferred. We consider various in-domain
and out-of-domain tasks for evaluation, across three distinct
scenarios: using both visual context and prompts, using
only visual context and only prompt. Considering these
scenarios examines to what extent the models can learn
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from the conditional information in a balanced manner and
whether they suffer when one input modality is not present.

Automated metrics. In addition to the user study, we also
use offline automated metrics to further evaluate the perfor-
mance of our model. In particular, we report FID scores [16]
for map-to-image tasks and RMSE scores for the image-to-
map tasks. We use 5000 test images per setting for each task,
generated by our model and Prompt Diffusion.

4.2. Results & Discussion

In this section, we compare our model against the most sim-
ilar approach in the literature, i.e. Prompt Diffusion [43].
Prompt Diffusion expects a source-target pair of context im-
ages as an input, while in contrast our approach only requires
context i.e. target images. More analysis regarding this is
provided in the supplementary materials. It is important to
notice that in all comparisons we follow the source-target
format of the input for Prompt Diffusion output image gen-
eration, but we omit the visualization of the source image
from the Figures, to have consistent visualizations for both
methods. Additionally, both approaches operate with a query
image and textual prompt as additional inputs.

We compare the methods across two important gener-
alization axes: (i) in-domain for seen and out-of-domain
for unseen tasks at training; (ii) visual context and prompt
(C+P), context-only (C), and prompt-only (P) variations of
conditioning. Finally, we present the results of our model on
few-shot setup when several context examples are given as
input. Prompt Diffusion does not support the few-shot setup.

4.2.1 Data Domain

In-domain comparison. We study the performance of
models on the same data domain as the training data, but
on the test data that is set aside. This encompasses three
“forward” tasks, i.e., the query image is either HED, seg-
mentation, or a depth map while the expected output image
is a real image, given the visual context and prompt in an
adequate form. Similarly, we evaluate three “reverse” tasks,
where the query and output roles are reversed. For the pur-
pose of this discussion, we focus on the conditioning setup
where both visual context and prompts (C+P) are given as
input. Figure 3 presents representative examples for each
of the tasks: the first three rows depict forward tasks, while
the last three rows depict reverse tasks. It can be observed
that our model is able to generate images with better fi-
delity to the context images and prompts, by managing to
match the specific colors and styles from the context. On the
other hand, Prompt Diffusion outputs are more saturated and
fail to leverage the visual characteristics from the context
(green radish instead of red in the second row). We include

Figure 4. Out-of-domain comparison to Prompt Diffusion [43]:
Image edit, with visual context and prompt (C+P) as conditioning.

more examples in the supplementary materials. These ob-
servations are further supported by user study presented in
Table 1 (In-domain (C+P) column), as well as in offline met-
rics comparison presented in Table 3 (C+P columns), where
we obtain satisfactory performance improvement (36.3% vs.
28.5% win-rate) over Prompt Diffusion.

Out-of-domain generalization. The most advantageous
aspect of having a model that is an in-context learner is its
capacity to generalize to new tasks by observing the context
examples given as input at inference. Again, for the purpose
of the discussion in this section, we focus on the condition-
ing setup where both visual context and prompt (C+P) are
given as input. To test these generalization abilities, we
consider tasks outside of training domains: image editing
with representative examples in Figure 4; {sketch, normal
map, scribbles, canny edge}-to-image with representative
examples in Figure 5. In both figures, we observe noticeable
improvements over Prompt Diffusion [43]. It is apparent
that the visual characteristics of the context images are also
transferred in the output images. Furthermore, we select
editing and sketch-to-image as representative out-of-domain
tasks to perform a user study. We report the results in Table
1 (Out-of-domain (C+P) column), where we observe great
improvements in win rate (52.3% vs. 26.9%), significantly
higher than for in-domain setup, showing the advantage of
in-context aware image generation.

4.2.2 Conditioning at inference

Using only visual context. To better understand the effect
of visual context examples on the model’s performance, we
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Figure 5. Out-of-domain comparison to Prompt Diffusion [43]:
{sketch, normal map, scribble, canny edge}-to-image tasks. Visual
context and prompt (C+P) are given as conditioning information.

Figure 6. Conditioning comparison with Prompt Diffusion [43]:
Using visual context and prompt (C+P) and visual context-only (C)
as conditioning, on both in-domain (image-to-HED) and out-of-
domain (editing, scribble-to-image, sketch-to-image) tasks.

analyze the outputs when the text prompt is not provided
(empty string), i.e., only visual context is used as condition-
ing. This experiment gives strong insights into the model’s
ability to perform in-context learning. We show representa-
tive examples of this setup in Figure 6. It can be observed
that Prompt Diffusion [43] is unable to learn from the visual

Figure 7. Zero-shot comparison to ControlNet [48] and Prompt
Diffusion [48]: Using prompt-only (P) as conditioning.

In-domain Out-of-domain

C+P C P avg C+P C P avg

PD [43] 28.5 4.5 30.4 21.1 26.9 22.8 25.9 25.2
Ours 36.3 80.2 29.6 48.6 52.3 63.7 49.8 55.2

Table 1. User study comparison to Prompt Diffusion (PD) [43]:
In-domain and out-of-domain tasks, considering different condi-
tioning settings: context image and prompt (C+P), visual context-
image-only (C), prompt-only (P). We report the win rate as a per-
centage of winning votes for each model.

Out-of-domain

C+P C avg

Ours (1-shot) 21.5 28.3 24.9
Ours (3-shot) 60.0 50.2 55.1

Table 2. User study comparison for 1-shot vs. 3-shot setups:
Out-of-domain tasks, considering different conditioning settings:
visual context and prompt (C+P), visual context-only (C). Note that
the “prompt-only” (P) setting corresponds to a zero-shot scenario
and is not applicable here. We report the win rate as a percentage
of winning votes for each model.

examples, indicating that it relies solely on the text caption
as conditional information. We include this setting in the
user study and we report the results in Table 1 ((C) columns).
Overall, we observe a significant performance gap between
our model and Prompt Diffusion, both for in-domain (80.2%
vs. 4.5% win-rate) and out-of-domain (63.7% vs. 22.8% win-
rate) tasks. This result is additionally supported by the offline
metrics in Table 3 ((C) columns) for in-domain tasks, further
strengthening the observations that our model is able to truly
leverage the visual context.

Using only text prompts. Apart from being able to handle
scenarios only with visual context, we aim to also support
scenarios using only text prompts. To enable this setting, we
simply mask out the visual context by using black images.
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Figure 8. Few-shot examples: Comparison between out-of-domain tasks (editing and sketch) using one context example with a text prompt,
and one, two, and three shots of context examples with no text prompt. Our model is able to leverage multiple visual examples to handle
scenarios when the text prompt is not present.

FID (map-to-img) ↓ RMSE (img-to-map) ↓
HED-to-img seg-to-img depth-to-img img-to-HED img-to-seg img-to-depth

C+P C P C+P C P C+P C P C+P C P C+P C P C+P C P

PD [43] 12.8 22.5 15.1 16.7 25.1 17.2 15.9 27.0 18.1 0.15 0.33 0.15 0.32 0.41 0.32 0.14 0.34 0.14
Ours 12.3 17.7 14.8 13.4 19.0 18.5 12.9 18.5 17.5 0.11 0.11 0.16 0.29 0.28 0.30 0.14 0.13 0.13

Table 3. Offline comparison to Prompt Diffusion (PD) [43] using automated metrics: FID and RMSE: In-domain tasks across three
different conditioning settings: visual context and prompt (C+P), visual context-only (C), prompt-only (P). Lower scores are better.

This essentially yields zero-shot settings, boiling down to
how ControlNet [48] is used at inference time. However, un-
like ControlNet which requires a separate model trained for
each task, our Context Diffusion generalizes across a series
of tasks. In Figure 7 we show representative examples of
this setting, comparing our model to ControlNet and Prompt
Diffusion. It can be seen that our model is able to generate
more realistic images compared to ControlNet and also per-
forms on par with Prompt Diffusion. Similar as before, we
also include this setting in the user study, reported in Table 1
((P) columns). We observe that our performance is slightly
worse to Prompt Diffusion on in-domain (29.6% vs. 30.4%)
and much better on out-of-domain (49.8% vs. 25.9%) tasks.
This supports our observations that the Prompt Diffusion
approach relies too much on the textual prompt, as well as
suffers in out-of-domain data regimes. Further, we com-
pare the automated metrics in Table 3 ((P) columns), again
observing comparable performance on in-domain tasks.

4.2.3 Few-shot visual context examples

The Context Diffusion architecture is flexible enough to ac-
commodate multiple context examples, enabling few-shot
scenarios. Using one context example proved to be enough
for in-domain tasks, as seen in Figure 3. Therefore in the
few-shot experiments, we focus on the out-of-domain tasks,
such as editing and sketch-to-image. In particular, we aug-
ment the visual context sequence with additional images,

depicting similar objects or scenes. Moreover, we look at
scenarios where the textual information is not present since
in that case, the model has to rely on the visual context only.
As can be seen from Figure 8, adding more context exam-
ples helps to strengthen the conditional visual representation,
especially when the prompt is not present. We also quantify
the performance by conducting a user study for the few-shot
settings, presented in Table 2. We are comparing our model
when using one context example vs. using three examples.
Overall we observe improved performance (55.1% vs. 24.0%
average win rate) when using three context images which
aligns with the qualitative observations. Note that in the
current experiments, we use 1 up to 3 shots as a representa-
tive few-shot setting, however, our model can accommodate
more than 3 shots.

5. Conclusion
We present an in-context-aware image generation framework
capable of learning from a variable number of visual context
examples and prompts. Our approach leverages both the
visual and text inputs on the same level, resulting in a
framework able to learn in a balanced manner from the
multimodal inputs. Furthermore, learning from a few context
examples showed to be helpful in learning strong visual
characteristics, especially if the prompt is not available. Our
experiments and user study demonstrate the applicability of
our approach across diverse tasks and settings, confirming
the improved quality and fidelity over counterpart models.
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